Popular Post

Popular Posts

Posted by : Unknown Selasa, 12 Januari 2016

Aerodinamika

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Vorteks tercipta oleh bagian sebuah sayap pesawat terbang, terungkap oleh asap. Vorteks adalah salah satu dari banyak fenomena yang berhubungan dengan kajian aerodinamika. Vortex tercipta oleh beda tekanan antara permukaan atas dan bawah sayap. Udara bertekanan tinggi di bawah permukaan bawah sayap bergerak di sekitar ujung sayap ke daerah bertekanan rendah pada permukaan atas, menghasilkan vortex.
Aerodinamika adalah salah satu cabang dinamika yang berkenaan dengan kajian pergerakan udara, khususnya ketika udara tersebut berinteraksi dengan benda padat. Aerodinamika adalah cabang dari dinamika fluida dan dinamika gas, dengan banyak teori yang saling berbagi pakai di antara mereka. Aerodinamika seringkali digunakan secara sinonim dengan dinamika gas, dengan perbedaan bahwa dinamika gas berlaku bagi semua gas.

Daftar isi

Deskripsi

Aerodinamika (ilmu gaya gerak) berasal dari bahasa Yunani yaitu air = udara dan dynamic = gaya gerak. Sehingga dapat disimpulkan bahwa aerodinamika adalah suatu ilmu yang mempelajari tentang bergeraknya suatu benda di dalam udara. Ilmu gaya udara merupakan lanjutan dari ilmu yang lebih tua yaitu ilmu gaya gerak air atau hidrodinamika dan ilmu gaya gerak udara ini erat hubungannya dengan beberapa ilmu yang lainnya yaitu ilmu alam (fisika), ilmu pasti (matematika), ilmu gaya (mekanika), dan ilmu cuaca (meteorogia) yang memberikan keterangan- keterangan azasi tentang udara yang diam khususnya tentang perubahan- perubahan yang dialami udara jika ketinggian bertambah.
Pada tahun 1810 Sir George Canley berpendapat bahwa udara dipaksa meniup berlawanan dengan arah gerak dari sayap dalam udara atau fluida tersebut. Kemudian pada tahun 1871 Pranoim Wenham merencanakan airfoil yang melengkung seperti bentuk dari sayap burung. Juga pada tahun ini Wenham yang pertama-tama membuat terowongan angina yang digerakkan dengan tenaga uap. Penyelidikan airfoil ini dilanjutkan oleh Wreight bersaudara dengan mengadakan percobaan-percobaan kurang lebih 150 buah air foil disamping melengkapi alat-alat kemudi untuk mengemudikan pesawat yang sedang terbang.dalam penyelidikan Iaanc Newton telah menemukan gaya-gaya udara yang melalui benda yang bergerak yaitu gaya angkat (lift dan hambatan/drag). Pada tahun 1902-1907 N Wilhelm Kutti (jerman), N.E. Janhowaki (rusia), Frederiek W. Launohoster (Inggris) menemukan teori bagaimana terjadinya gaya angkat (lift) pada airfoil.
Dengan penemuan-penemuan pada tahun-tahun di atas jelaslah bahwa aerodinamika merupakan ilmu yang masih baru, dan bukanlah suatu pengetahuan yang abstrak seperti ilmu pasti dan mekanik karena hingga kini penyelidikan-penyelidikan masih terus dilakukan.
Aerodinamika sebenarnya tidak lain dari pada suatu yang mempelajari atau menyelidiki sifat-sifat udara,reaksi-reaksi dan akibat-akibat yang timbul dari gerakan udara terhadap benda yang dilalui oleh udara atau gerakan benda-benda di dalam udara tersebut. Jadi aerodinamika berarti pula pengetahuan atau penyelidikan mengenai gerakan-gerakan benda di dalam udara dimana pengertian ini sangat erat hubungannya denganilmu penerbangan.
Adapun factor-faktor yang mempengaruhi Aerodinamika:
  • Temperature (suhu udara)
  • Tekanan udara
  • Kecepatan udara
  • Kerapatan / kepadatan udara
Untuk mempelajari ilmu aerodinamika, ada beberapa hukum diantaramya

Hukum Newton

Hukum Newton I
Mengatakan bahwa benda yang diam akan tetap diam sedangkan benda yang bergerak akan tetap bergerak dalam garis lurus dan kecepatan yang tetapkecuali suatu sebab dari luar yaitu gaya yang memaksanya mengubah keadaan tersebut
Hukum Newton II
Mengatakan bahwa perubahan banyaknya gerakan berbanding langsung dengan gaya yang bekerja dan menurut garis kerja gaya tersebut. Selanjutnya Hukum Newton II mengatakan bahwa benda yang bergerak akan mendapat perlambatan.
Hukum Newton III
Mengatakan bahwa aksi sama besar dan berlawanan arah dengan reaksi. Artinya gaya yang dilaksanakan oleh dua benda terhadap sesamanya sama besar dan berlawanan arahnya.

Tinjauan

Pemahaman akan pergerakan udara (seringkali disebut "medan aliran") di sekitar suatu benda membolehkan perhitungan gaya-gaya dan momen-momen yang bertindak pada benda tersebut. Sifat-sifat sejenis yang dihitung untuk suatu medan aliran meliputi kecepatan, tekanan, kerapatan, dan temperatur sebagai fungsi posisi ruang dan waktu. Aerodinamika membolehkan definisi dan solusi persamaan untuk kekekalan massa, momentum, dan energi di dalam udara. Penggunaan aerodinamika melalui analisis matematika, hampiran empirik, percobaan lorong angin, dan simulasi komputer membentuk landasan ilmiah bagi pesawat terbang dan sejumlah teknologi lainnya.
Persoalan-persoalan aerodinamik dapat dikelompokkan menurut lingkungan alirannya. Aerodinamika eksternal adalah kajian aliran di sekitar benda-benda padat dengan bentuk yang berbeda-beda. Pengevaluasian gaya angkat dan gaya hambat pada sebuah pesawat terbang bersayap diam atau gelombang kejut yang terbentuk di depan moncong roket merupakan contoh-contoh aerodinamika eksternal. Aerodinamika internal adalah kajian aliran melalui bagian-memanjang di dalam benda padat. Misalnya, aerodinamika internal mencakup kajian aliran udara melalui enjin jet atau melalui pipa penyaman udara.
Pemahaman akan pergerakan udara (seringkali disebut "medan aliran") di sekitar suatu benda membolehkan perhitungan gaya-gaya dan momen-momen yang bertindak pada benda tersebut. Sifat-sifat sejenis yang dihitung untuk suatu medan aliran meliputi kecepatan, tekanan, kerapatan, dan temperatur sebagai fungsi posisi ruang dan waktu. Aerodinamika membolehkan definisi dan solusi persamaan untuk kekekalan massa, momentum, dan energi di dalam udara. Penggunaan aerodinamika melalui analisis matematika, hampiran empirik, percobaan lorong angin, dan simulasi komputer membentuk landasan ilmiah bagi pesawat terbang dan sejumlah teknologi lainnya.
Persoalan-persoalan aerodinamik dapat dikelompokkan menurut lingkungan alirannya. Aerodinamika eksternal adalah kajian aliran di sekitar benda-benda padat dengan bentuk yang berbeda-beda. Pengevaluasian gaya angkat dan gaya hambat pada sebuah pesawat terbang bersayap diam atau gelombang kejut yang terbentuk di depan moncong roket merupakan contoh-contoh aerodinamika eksternal. Aerodinamika internal adalah kajian aliran melalui bagian di dalam benda padat. Misalnya, aerodinamika internal mencakup kajian aliran udara melalui enjin jet atau melalui pipa penyaman udara.
Persoalan-persoalan aerodinamik dapat juga dikelompokkan menurut perbandingannya terhadap laju suara, yaitu laju aliran di bawah, di sekitar, atau di atas laju suara. Suatu persoalan disebut subsonik jika semua laju dalam persoalan tersebut lebih kecil daripada laju suara, transonik jika laju di atas dan di bawah laju suara kedua-duanya hadir (biasanya ketika laju karakteristik hampir menyamai laju suara), supersonik ketika laju aliran karakteristik lebih besar daripada laju suara, dan hipersonik ketika laju aliran sangat-lebih-besar daripada laju suara. Para aerodinamikawan tidak sepakat dalam hal ketepatan definisi aliran hipersonik; bilangan Mach minimum untuk aliran hipersonik berada pada kisaran 3 sampai 12.
Pengaruh viskositas dalam aliran memberikan klasifikasi ketiga. Beberapa persoalan mungkin hanya akan menghadapi efek viskos sangat kecil pada solusinya, di mana kasus viskositas dianggap dapat diabaikan. Hampiran terhadap persoalan-persoalan ini disebut aliran invisid. Aliran di mana viskositas tidak dapat diabaikan disebut aliran viskos.

Sejarah

Gagasan mula-mula – zaman kuno sampai abad ke-17

Lukisan sebuah desain mesin terbang, karya Leonardo da Vinci (kira-kira tahun 1488). Mesin ini merupakan sebuah ornitopter, dengan sayap yang mengepak serupa dengan sayap burung, kali pertama disajikan dalam karyanya Kodeks tentang Penerbangan Burung pada tahun 1505.
Manusia telah memanfaatkan gaya-gaya aerodinamik selama ribuan tahun berupa kapal layar dan kincir angin.[1] Gambar-gambar dan kisah-kisah penerbangan telah muncul sepanjang sejarah ditulis,[2] misalnya kisah legendaris Icarus dan Daedalus.[3] Meskipun pengamatan beberapa efek aerodinamik seperti hambatan angin (misalnya gaya geser) telah ditulis oleh Aristoteles, Leonardo da Vinci, dan Galileo Galilei, sangat sedikit usaha telah dilakukan untuk mengembangkan teori kuantitatif yang menyeluruh mengenai aliran udara sebelum abad ke-17.
Pada tahun 1505, Leonardo da Vinci menulis Kodeks tentang Penerbangan Burung, salah satu risalah terawal mengenai aerodinamika. Dia menulis untuk kali pertama bahwa pusat massa seekor burung yang sedang terbang tidaklah koinsiden dengan pusat tekanannya, dan dia menjelaskan konstruksi ornitopter, dengan sayap yang mengepak, serupa sayap burung.
Sir Isaac Newton ialah orang pertama yang mengembangkan teori kelembaman udara,[4] membuatnya menjadi salah satu aerodinamikawan perdana. Sebagai bagian dari teori itu, Newton memandang bahwa pergeseran disebabkan oleh dimensi benda, kerapatan fluida, dan kecepatan pangkat dua. Ini semua terbukti benar untuk laju aliran rendah. Newton juga mengembangkan sebuah hukum untuk gaya geser pada lempengan datar yang condong ke arah aliran fluida. Dengan menggunakan F untuk gaya geser, ρ untuk kerapatan, S untuk luas lempengan datar, V untuk kecepatan aliran, dan θ untuk sudut kecondongan, hukum ini disajikan sebagai F = \rho SV^2 \sin^2 (\theta)
Persamaan ini tidak benar untuk perhitungan pergeseran dalam sebagian besar kasus. Pergeseran pada lempengan datar mendekati linear dengan sudut kecondongan, berkebalikan kuadratik dengan tindakan pada sudut kecil. Rumus Newton dapat menggiring seseorang untuk percaya bahwa penerbangan lebih sukar daripada yang sebenarnya, karena salah memperkirakan pergeseran ini dan dengan demikian juga gaya dorong yang diperlukan, dan keadaan ini ikut serta menunda penerbangan manusia. Meski demikian, rumus ini lebih tepat digunakan untuk lempengan yang sangat ramping ketika sudut membesar dan pemisahan aliran terjadi, atau jika laju aliran tergolong supersonik.[5]

Permulaan modern – abad ke-18 sampai ke-19

Sebuah lukisan glider (pesawat peluncur), karya Sir George Cayley, salah satu upaya terdini untuk menciptakan bentuk aerodinamik.
Pada tahun 1738 matematikawan Belanda-Swiss, Daniel Bernoulli menerbitkan Hydrodynamica, yang di dalamnya dia menjelaskan hubungan mendasar antara tekanan, kerapatan, dan kecepatan; khususnya prinsip Bernoulli, yakni metode untuk menghitung gaya angkat aerodinamik.[6] Persamaan-persamaan aliran fluida yang lebih umum - persamaan-persamaan Euler - diterbitkan oleh Leonhard Euler pada tahun 1757. Persamaan-persamaan Euler diperluas untuk menggabungkan efek-efek viskositas pada paro pertama dasawarsa 1800-an, menghasilkan persamaan-persamaan Navier–Stokes.
Sir George Cayley diakui sebagai orang pertama yang mengenali empat gaya aerodinamik dalam penerbangan; yakni gaya berat, gaya angkat, gaya hambat, dan gaya dorong—dan hubungan di antara mereka.[7][8] Cayley percaya bahwa gaya hambat pada mesin terbang harus "dilawan", dalam artian oleh tenaga penggerak untuk memunculkan taraf penerbangan. Cayley juga memperhatikan sifat bangun-bangun aerodinamik dengan gaya hambat yang rendah. Di antara bangun yang dia selidiki adalah penampang ikan forel (trout). Ini boleh muncul secara melawan intuisi; tetapi, tubuh-tubuh ikan dibentuk untuk menghasilkan hambatan yang sangat rendah ketika mereka bergerak dan berpindah-pindah di air. Penampang-penampang mereka kadang-kadang sangat dekat dengan airfoil modern bergaya hambat rendah.
Percobaan-percobaan yang menyelidiki hambatan udara dilakukan oleh para peneliti pada abad ke-18 dan ke-19.
Teori-teori gaya hambat dikembangkan oleh Jean le Rond d'Alembert,[9] Gustav Kirchhoff,[10] dan Lord Rayleigh.[11] Persamaan-persamaan untuk aliran fluida beserta gaya gesek dikembangkan oleh Claude-Louis Navier[12] dan George Gabriel Stokes.[13] Untuk menyimulasikan aliran fluida, ada banyak percobaan yang melibatkan benda tenggelam di dalam arus air atau hanya dengan menjatuhkan benda-benda itu dari puncak gedung tinggi. Menjelang akhir periode ini, Gustave Eiffel menggunakan Menara Eiffel-nya untuk membantunya dalam uji jatuh pelat rata.
Cara yang lebih saksama untuk mengukur gaya hambat adalah dengan menempatkan sebuah benda di dalam arus udara buatan yang diatur seragam, di mana kecepatan diketahui. Orang pertama yang melakukan percobaan ini ialah Francis Herbert Wenham, yang juga membangun percobaan terowongan angin pada tahun 1871. Wenham ialah juga anggota organisasi profesional pertama yang mengabdi untuk urusan aeronautika, Royal Aeronautical Society, di United Kingdom. Benda yang ditempatkan di dalam model terowongan angin hampir selalu lebih kecil daripada yang terjadi dalam keadaan sebenarnya, jadi metode ini diperlukan untuk menghubungkan model-model berskala kecil dengan analoginya di kehidupan nyata. Hal ini dicapai melalui penemuan bilangan Reynolds yang tanpa dimensi oleh Osborne Reynolds.[14] Reynolds juga melakukan percobaan peralihan aliran, dari aliran laminar ke aliran turbulensi pada tahun 1883.
Pada akhir abad ke-19, diketahuilah dua persoalan sebelum terwujudnya penerbangan benda yang lebih berat daripada udara. Yang pertama adalah penciptaan sayap aerodinamik yang rendah gaya hambatnya, tetapi tinggi gaya angkatnya. Persoalan kedua adalah cara menentukan daya yang diperlukan untuk mempertahankan keadaan melayang. Pada masa ini, landasan pengetahuan telah dirintis untuk ilmu yang kini dikenal sebagai dinamika fluida dan aerodinamika, dengan berbagai macam uji mesin terbang yang tidak terlalu ilmiah dan tidak terlalu sukses juga.
Replika terowongan angin Wright Bersaudara dipamerkan di Pusat Dirgantara dan Angkasa Virginia. Terowongan angin adalah kunci dalam pengembangan dan pengabsahan hukum-hukum aerodinamika.
Pada tahun 1889, Charles Renard, seorang insinyur penerbangan Perancis, menjadi orang pertama yang secara masuk akal meramalkan daya yang diperlukan untuk mempertahankan keadaan melayang.[15] Renard dan fisikawan Jerman, Hermann von Helmholtz, mengeksplorasi muatan sayap burung (perbandingan bobot terhadap luas kepakan sayap), yang sebenarnya menyimpulkan bahwa manusia tidak akan mampu melayang dengan kekuatannya sendiri hanya dengan menempelkan sayap pada lengannya. Otto Lilienthal, mengikuti karya Sir George Cayley, merupakan orang pertama yang cukup berjaya dengan penerbangan peluncurnya. Lilienthal percaya bahwa foil udara yang tipis dan berkurva akan menghasilkan gaya angkat yang tinggi dan gaya hambat yang rendah.
Octave Chanute memberikan jasa yang hebat bagi mereka yang berminat dalam bidang aerodinamika dan mesin terbang dengan menerbitkan buku yang memuat semua penelitian yang dilakukan di dunia sampai tahun 1893.[1

Leave a Reply

Subscribe to Posts | Subscribe to Comments

- Copyright © aeronoutika - Devil Survivor 2 - Powered by Blogger - Designed by Johanes Djogan -